Refactoring machine learning code - namedtuple
Instead of using sometimes confusing indexing in your code, use a namedtuple instead. It’s backwards compatible, so you can still use the index, but you can make your code much more readable.
This is especially helpful when you transform between PIL and numpy based code, where PIL uses a column, row notation while numpy uses a row, column notation.
Let’s consider this piece of code where we want to get the pixel locations of several points which are in the numpy format:
Refactoring machine learning code - einops
Einops is a really great library to improve your machine learning code. It supports Numpy, PyTorch, Tensorflow and many more machine learning libraries. It helps to give more semantic meaning to your code and can also save you a lot of headaches when transforming data.
As a primer let’s look at a typical use-case in machine learning where you have a bunch of data and you want to reshape it, so some dimensions are merged together like this:
Refactoring machine learning code - comments as code
I find that in the field of data science and machine learning some coding principles that are standard in traditional software engineering sometimes are lacking. One such principle is to strive to rather specify everything that is possible in code rather than as comments.
Why does it make sense to do that?
Comments often don’t age well. You write them in the context of the current code, but then over time as the code gets changed and readapted to other use cases, the context changes.
Swift as a viable Python alternative?
Recently Swift for Tensorflow has picked up some steam, so I wanted to explore the Swift programming language a bit.
The main advantage over Python for Swift is that Swift is very fast by directly using the LLVM compiler infrastructure. Python itself relies a lot on C to make code run fast, but if you write Python code you can get very slow code if it’s not optimized.
However, the main disadvantage for Swift is that it’s ecosystem when it comes to machine learning and data processing libraries is currently a lot less powerful than Python’s ecosystem.
Eigenvectors and eigenvalues in machine learning
As a data scientist, you are dealing a lot with linear algebra and in particular the multiplication of matrices. Important properties of a matrix are its eigenvalues and corresponding eigenvectors.
So let’s explore those a bit to get a better intuition of what they tell you about the transformation.
We will just need numpy and a plotting library and create a set of points that make up a rectangle (5 points, so they are visually connected in the plot):